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Mid-Semester Evals

= Generally, things seem good!
= General
= Examples are appreciated in lecture
= Favorite aspect: projects (almostall) --- writtens significantly less preferred
= Office hours:
= Most common answers: “Helpful.” and “Haven’t gone.”
= Some:too crowded. -> perhaps try a different office hour slot
= Section:
= Split between basically positive and don’t go
= Assignments
= Written: median time 6hrs
= Programming: median time 10hrs
= Some people spend a lot more time though - come talk to us if you are stuck
= Exams:
= Midterm: evening (13) vs in-class (11) or indifferent (8)
= Want to do the contest A

Contest

= Course contest

= Fun! (And extra credit.)
= Regular tournaments
= Instructions posted soon!

Outline

= HMMs: representation
= HMMs: inference

= Forward algorithm

= Particle filtering

Recap: Reasoning Over Time

= Stationary Markov models 03
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Conditional Independence

= HMMSs have two important independence properties:
MN"- Markov hidden process, future depends on past via the present «—
= Current observation independent of all else given current state
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= Quiz: does this mean that observations are independent
given no evidence?
= [No, correlated by the hidden state]




Real HMM Examples

Outline

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)

= States are specific positions in specific words (so, tens of
thousands)

= Machine translation HMMs:
= QObservations are words (tens of thousands)
= States are translation options

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

= HMMs: representation
= HMMs: inference

= Forward algorithm

= Particle filtering

Filtering / Monitoring

Example: Robot Localization

= Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

= We start with B(X) in an initial setting, usually uniform
= As time passes, or we get observations, we update B(X)

= The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program
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Prob 0

t=0
Sensor model: never more than 1 mistake <
Motion model: may not execute action with small prob.

Example: Robot Localization

Example: Robot Localization
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Example: Robot Localization

Prob 0 1

Example: Robot Localization

Prob 0 1
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Example: Robot Localization

Prob 0 1

t=5

Inference Recap: Simple Cases
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Passage of Time

= Assume we have current belief P(X | evidence to date)

B(Xy) = P(Xtler:)

Then, after one time step passes: : @

P(Xiqalers) =D P(Xpqalz) P(wilery)
= Tt - - =

Or, compactly:

BRX,41) = Y P(X'|2)B(xy)

Basic idea: beliefs get “pushed” through the transitions
= With the “B” notation, we have to be careful about what time step

t the belief is about, and what evidence it includes

Example: Passage of Time

= As time passes, uncertainty “accumulates”

B'(X") = Z P(X'|z)B(x)

Transition model: ghosts usually go clockwise
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Observation
Assume we have current belief P(X | previous evidence):/
B'(Xiy1) = 1)(X‘r_+__1,\€w)
Then:

P(Xiyilerii41) o< Plegy1| X4 1) P(Xypiler) <

Or:
B(X;41) o< P(e| X)B'(X;41)

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize

Example: Observation

= As we get observations, beliefs get
reweighted, uncertainty “decreases”

Before observation After observation

B(X) x P(e|X)B'(X)
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0.500 0.627’k
0.500 0.373
True  0.500 — 0.513 odes it
False  0.500 0.182 0.117
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The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(Xile1:)

We can normalize
. . as we go if we
= We can derive the following updates e t% S

P(x|e) at each

P(ft‘el:t) 29'¢ P("L'tvel:t) T time step, or just
— once at the end...
=Y P(xi_1,%1 1)

Tt—1

> P(xp—1,e1:4-1) Pat|ri—1) Plet|zt)
—_— e~ —

Tt—1

= P(etm) Y Pailm—1)P(z—1,€1:4-1)

Tt—1

Online Belief Updates

= Every time step, we start with current P(X | evidence)
= We update for time:

P(atlery—1) = D P(ap-1ler:—1) - Platwe1) ®_;®

Ti—1

= We update for evidence:
P(ztler:) ocx P(xtlersi—1) - Pletlzt) ?

= The forward algorithm does both at once (and doesn’t normalize)
= Problem: space is |X| and time is |X|? per time step

Recap: Filtering

- Elapse time: compute P( X;| €4.1)
P(‘Tf‘('lzf—l) = Z P(If—l\el:t—l) 'P($t|$t,—1)

Tt—1

— Observe: compute P( X;| e;4)
P(xiler) ox P(x¢er—1) - Plet|z:)

Belief: <P(rain), P(sun)>

9 @ P(X;) <05,05> Prior on X,

P(X; | By = umbrella) <0.82,0.18>  Observe
@ @ P(Xs | Ey = umbrella) <0.63,0.37>  Elapse time

P(Xs | By = umb, F> = umb) <0.88,0.12>  Observe




Outline Particle Filtering

. = Filtering: approximate solution
= HMMs: representation . . . 0.0 0.0
) = Sometimes |X] is too big to use bix)
= HMMs: inference exact inference 0.0 | 00 | 02
F dal ith = |X| may be too big to even store B(X)
[ ] . i i
orward algorithm E.g. X is continuous oo MAEE
> Particle filtering = Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles Y/
= Time per step is linear in the number \3
of samples ) ®
= But: number needed may be large
= In memory: list of particles, not Y
states {
= This is how robot localization %°
1 works in practice o *0 | o%
o | L 7
Particle Filtering: Elapse Time Particle Filtering: Observe
= Each particle is moved by sampling its = Slightly trickier: P
next position from the transition model = We don't sample the observation, we fix it
(X = This is similar to likelihood weighting, so e |oe
—y 2’ =sample(P(X'|z)) we downweight our samples based on
— @ the evidence ®
o ) o0 | (% ® g0 00
= This is like prior sampling — samples’ \f“'
frequencies reflect the transition probs w(z) = 1;(9\1)_ (r"\ A
= Here, most samples move clockwise, but . , ¢ 35‘(
some move in another direction or stay in — B(X) x P(e|X)B'(X) o)
place i o
; i = Note that, as before, the probabilities ! rd
= This captures the passage of time o don’'t sum to one, since most have been © Qo
= |f we have enough samples, close to the 5 downweighted (in fact they sum to an S
exact values before and after (consistent) ® g0 |00 approximation of P(e)) Ae .Q. oo
A}
O i~y
Particle Filtering: Resample Particle Filtering
. . = Sometimes |X| is too big to use
. Rar;helr th%\? trracklrr%g IW(alghted . exact inference 0.0 0.0
samples, we resample = |X| may be too big to even store B(X)
e [ oo = E.g. X'is continuous 0.0 | 0.0 | 0.2
= N times, we choose from our weighted A = |X|2 may be too big to do updates
sample distribution (i.e. draw with ° g0 e ) ) ) 0.0 | 02 | 05
replacement) = Solution: approximate inference
= Track samples of X, not all values
L i . = Samples are called particles
= This is equivalent to renormalizing the = Time per step is linear in the number o
distribution of samples
= But: number needed may be large oo
. . = In memory: list of particles, not
= Now the update is complete for this e | o statos P
time step, continue with the next one 50 o o oo | %o
o0 o | @ = This is how robot localization O
'\ works in practice




Representation: Particles

= Our representation of P(X) is now ]
a list of N particles (samples)
= Generally, N << [X| 'Y )
= Storing map from X to counts
would defeat the point L]
oo | ¢%
= P(x) approximated by number of
particles with value x Particles:
= So, many x will have P(x) = 0! gg;
= More particles, more accuracy (33)
(3.2)
(3.3)
= For now, all particles have a gf;
weight of 1 (83)
(3.3)
21)

37

Particle Filtering: Elapse Time

= Each particle is moved by sampling its
next position from the transition model
N
2 = sample(P(X'|z)) .\
(X :’,
= This is like prior sampling — samples’
frequencies reflect the transition probs
= Here, most samples move clockwise, but
some move in another direction or stay in *
place
= This captures the passage of time ° O‘L
= |f we have enough samples, close to the ®
exact values before and after (consistent) ® (g0 | @04

Particle Filtering: Observe

= Slightly trickier:
= Don't do rejection sampling (why not?)
= Wedon't sample the observation, we fix it e | o0

= This is similar to likelihood weighting, so
we downweight our samples based on
the evidence

w(z) = P(ela)

B(X) x P(e|X)B'(X) o

Note that, as before, the probabilities

don’t sum to one, since most have been °l |-
downweighted (in fact they sum to an ®
approximation of P(e)) e |lg0|ee

Particle Filtering: Resample

Old Particles:
= Rather than tracking oy

weighted samples,

we resample
o L)
= N times, we choose
from our weighted )

sample distribution
(i.e. draw with
replacement)

Old Particles:
= This is equivalent to 2,1) w=1
renormalizing the
distribution

complete for this time
step, continue with
the next one
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Robot Localization

= In robot localization:
= We know the map, but not the robot’s position
= QObservations may be vectors of range finder readings

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique

= [Demos]




